
heat fluxes; s, a rea  of contact;  T, t empera tu re ;  u, u0, f i l t ra t ion speed and fluidization onset speed; xi, s t r e s s  
axes; ~ ,  proport ion of conducting par t i c les  in binary mixture; /3(~) ,  rat io of effective conductivity of medium 
containing noncontacting par t i c les  to the effective conductivity of the continuous phase for  X 1 >> h 0; 31, par t ic le  
density minus specific buoyancy; 5, compress ion  length; ~, coordination number;  0, ~, angular coordinates  
of contact  re la t ive  to mean flow direct ion;  4,  exponent in (13) and (14); Ai, eigenvalues of conductivity tensor  
A; h0, ht ,  conductivit ies of continuous and d i spersed  phases;  v, f ract ion of surface  a rea  rep resen ted  by a 
single contact;  p, volume content of d i spersed  phase; o, compress ive  s t ress ;  r ,  mean tempera ture ;  if, d i s -  
tr ibution hmction; ~(u), hydraulic force  pe r  unit par t ic le  volume; *, values r e f e r r e d  to one par t ic le ;  < ), 
averages. 
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A C O M B I N E D  N U M E R I C A L  M E T H O D  F O R  D E T E R M I N I N G  

THE C O N D U C T A N C E  O F  C O M P O S I T E  B O D I E S  

G.  N. D u l ' n e v ,  M. A. E r e m e e v ,  
Y u .  P .  Z a r i c h n y a k ,  a n d  E .  N. K o l t u n o v a  

UDC 536.242:518.61 

We propose  a new numer ica l  method (a combination of the method of gr ids  with Rayleigh' s 
method) which is  ve ry  promising for  the calculat ion of potential  f ields,  fluxes, and conductance 
of composi te  bodies, especia l ly  in the case  of components with sharply differing proper t ies .  

We consider  a two-component  region in the form of a cylinder made up of two hemispheres  which are  in 
contact at the point A (Fig. 1). As an example,  we consider  the problem of determining the effective con- 
ductance, say the effective the rma l  conductivity, of the composi te  region. We denote the the rmal  conductivity 
of the ma te r i a l  of the hemispheres  by s and that of the ma te r i a l  filling the gap between them by h 2, where 
X 1 and k 2 may be substantial ly different.  Suppose (for the sake of definiteness) that the bases of the cyl inder  
are  isopotential  ( isothermal)  planes and that the la tera l  surface  is impenetrable  to the s t reaml ines  (an 
adiabatic surface).  Such a composi te  sys tem is often used for  constructing a model  of the s t ruc tu re  of granular  
ma te r i a l s  when we calculate  the i r  effect ive coeff icients  of genera l ized  conductance ( thermal  conductivity, 
e l ec t r i ca l  conductivity,  d ie lect r ic  permit t iv i ty ,  magnetic permeabi l i ty ,  etc. ). 
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Fig. 1. Model of s t ructura l  granular  mater ia ls :  a) axono- 
met r ic  representat ion of model; b) distribution of s t reamlines  
in model and subdivision into blocks by a grid. 

Since we have no exact solution of the problem for the conductance of the model for an a rb i t ra ry  relation- 
ship between the proper t ies  of the components ~1 and s 2, it becomes necessa ry  to use various approximate 
methods for the analytical determination of the conductance. The e r r o r  in the approximate methods can be 
est imated and the boundaries of their  applicability can be determined by comparing the result  of an approxi- 
mate calculation with an analogous quantity obtained by a numerica l  method which, for sufficiently small 
e r ro r ,  can be taken as the standard. 

In o rder  to c a r r y  out the numer ica l  calculation, we subdivide the composite region into small segments 
(biocks). If the proper t ies  of the components differ great ly  (for example, x 2 << /t l), the concentration of 
s t reaml ines  (the s t reamline  density) (Fig. lb) in the region near the point of contact is much grea te r  than 
at the per iphery,  so that we must  use a gr id  with a nonuniform step which decreases  as we approach the point 
of contact. We therefore  subdivide the region in such a way that the dimensions of the gr id  step along the z 
axis will be determined by the intersect ion of the gr id  along the y axis with the sphere--gap component inter-  
face. We assign the subscripts  i and j to the coordinates of the grid lines (Fig. lb). 

As a result ,  the composite region is subdivided into biocks most  of which are  filled with homogeneous 
components (with thermal  conductivity kl or s while a smal ler  number of them (the blocks intersected by 
the component interface) are  filled with components of different kinds. 

The proposed method of subdividing along the z axis considerably simplifies our further  description, 
since it enables us to have only one type of two-component blocks with a spherical  interface passing between 
diagonally opposite ver t ices  (Fig. 2) instead of the five types of two-component blocks obtained in the investiga- 
tion of a uniform subdivision along the y and z axes in [1]. The bases of a two-component block will also be 
regarded  as plane i so therms,  while the la tera l  surface paral lel  to the z axis will again be taken to be adiabatic. 

C o n d u c t a n c e  o f  t h e  B l o c k s  

The determinat ion of the conductance of a small  two-component block is an independent problem, which 
we shall solve by l~ayleigh's method [2]. 

F i r s t  we divide a two-component  block by means of i so thermal  pianes paral lel  to the bases into in- 
f ini tesimally thin flat layers  of thickness dz (Fig. 2a). The thermal  conductance of such a flat two-component 
layer  in the z direct ion will be denoted by d~sz (where s is the subscript  for the i so thermal  subdivision) and 
calculated as the conductance of two flat walls of thickness dz with thermal  conductivities k 1 and k 2 which are 
positioned perpendicular  to the heat flux. 

. /, 

%'- ~J<-1 Y ~'7 "J 

Z _ L I ~ _ ~  

z I -  ~ I -i / ! j  . 

{._: 
" "J,.-s7 Y Y/ Y 

Fig. 2. Example of the separation of a two-componentblock 
by isothermal (a) and adiabatic (b) surfaces. 
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Fig.  3. Scheme  of i n t e r a c t i o n  of b locks  in the 
ca l cu l a t i on  of the t e m p e r a t u r e  tij in an ind iv idua l  

b lock  ij: I) ~ ( i _ l ) _ i , j l  = l/~ [(r_l + - 1  �9 y[ i ,  jl y ( i - 1 ,  j I - l ;  

If) crzli,(j+l)_jl =~ [O-z~i,j/ + (7-t �9 ]-'; 
zl i ,  j + l l  

-1 
vr) Cryl i_( i+l ) , j  I =~/2 [~ j I + ~ +1 ' j l ] - i ;  

IV) gZli, j - ( j - -1) ,  =1/2 [(TZli , jl + ' ~ z l i ,  j - l I  I- l~ 

The  t h e r m a l  conduc tance  Oszij of a t w o - c o m p o n e n t  b lock in the  z d i r e c t i o n  can  be ob ta ined  by s u m m i n g  
( in tegra t ing)  the  t h e r m a l  r e s i s t a n c e s  of t h e  s y s t e m  of s u c c e s s i v e l y  pos i t i oned  l a y e r s  of t h i c k n e s s  dz, i .  e . ,  

1 1 
- -  ( I )  

r = Rszi j ; I  dRszi j  

Z]-I 

E a c h  e l e m e n t a r y  r e s i s t a n c e  dRsz i j  i s  f o r m e d  by the  p a r a l l e l  combina t i on  of the r e s i s t a n c e  dR'sz i j  and 
dR"szi j  (Fig.  2a) of a p a r t i c l e  and the  vo id - f i l l ing  componen t ;  t h e r e f o r e ,  

dRs~i~ = [(dR~j) -1 § (dR~'~u)-~] -~, (2) 

w h e r e  

dz dRsz~/ = dz dRg~l = nZ~ (y2 _ YL1)  ' n~,,, (y? - -  y2) 

2 l _ ( l _ z j ) 2 .  At the  c o m p o n e n t  i n t e r f a c e  the  g r i d  c o o r d i n a t e s  (for i = j) Yi and zj a r e  r e l a t e d  by the equat ion  Yi = 
T h e r e f o r e ,  

dR~v = dz 
u~ 1 [( 1 - -  z j _ l )  ~ - - (  l - - z ) 2 ]  ' ( 3 )  

dRszq clz 
a ~  [( 1 - -  z) ~ - -  ( 1 - -  z j) 21 

F r o m  the  e x p r e s s i o n s  (2) and (3) 

dz v =  ~ . 
dRsz i j  = 

~ 1  [( 1 - -  Zi_l) ~ - -  (1 - -  zj) "2 - -  (1 - -  ~)(1--z)~] ' 7.1 

Subst i tut ing (4) into (1) and c a r r y i n g  out the  i n t eg ra t ion ,  we obtain an e x p r e s s i o n  fo r  ca lcu la t ing  the 
conduc tance  of b lock  ij in the  z d i rec t ion :  

(4) 

( ~ s z i /  
V~(1 _ v)(1 - o Yi-0 §  v) 2 2 - -  - -  (y~-I - -vyi )  

l n v  -- 1 ~ ~ -- 
(1 v)( - -  yT) q- V (I - -  v) - -  (Yi-, , Y ~  

(5) 

It  i s  known tha t  the  conduc tance  va lue  c a l c u l a t e d  f r o m  e x p r e s s i o n  (1) will  be s y s t e m a t i c a l l y  h ighe r  than  
i t s  t r u e  va lue  a t r ,  i . e . ,  a sz i j  = a z  m a x  > o trz In the y d i r ec t i on  the conduc tance  Osyij can  be ca l cu l a t ed  in an 

ana logous  m a n n e r ,  but un fo r tuna t e ly  the  i n t e g r a t i o n  f o r  obta ining the  c a l c u l a t e d  e x p r e s s i o n  can be c a r r i e d  
out only by n u m e r i c a l  me thods .  

We t h e r e f o r e  s i m p l i f y  the p r o b l e m  and def ine  ~syi j  as  the  conduc tance  of a b lock  c o m p l e t e l y  f i l led  with 
the  m a t e r i a l  of a p a r t i c l e :  

' 2 - V 1  2 1 1 - -  y i -  1 - -  Y~ ( 6 )  
~svl J = 2~)~ 1 

In Yt 
Y 1 - 1  
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Fig. 4. Comparison of the r e su l t s  of cal- 
culating the effect ive t h e r m a l  conductivi ty of 
the model  as a function: a) of the ra t io  of t h e r -  
m a l  conduct ivi t ies  of the components  [1) Vakao 
and V o r t m e y e r  [1]; 2, 3) k m a x / k  2 and k m i n /  
k 2 - -  the method p roposed  here] ;  b) of the num- 

m a x  be r  of blocks N in the gr id,  ~ = 0.01 [I! X out / 
k~; II) ;~max/k~;  I/I) kmin /k~ ;  IV) k m m / A  2; 

In out 
the marked point is for h max/k 2]. 

Obviously,  the value calcula ted by (6) for  the conductance Osyij will be too high, and the re fo re  we can 
use  it for  calculat ing hmax.  

Nowwe shall  subdivide the blocks into inf in i tes imal ly  thin l aye r s  of width dy by using a sy s t em of 
adiabatic  su r f aces  pe rpend icu la r  to the i s o t h e r m a l  bases  of the two-component  block (Fig. 2b). The t h e rma l  
r e s i s t a n c e  of each thin l aye r  d_Ray can be r e p r e s e n t e d  as the sum of the t h e r m a l  r e s i s t a n c e s  of two flat  walls 
of width dy fil led with components  having t h e r m a l  conduct ivi t ies  A 1' and ~ 2- 

The t h e r m a l  conductance of the block in the di rect ion of the z axis ca lcula ted  by this method will be 
denoted by aazi j ;  we can obtain it f r om the express ion  

a.,i~ = ' d~j, do~j = [(d~]) -I + (d~,'j)-ll -I, (7) 
Yi-I 

where  do-azij and du'~zij a re  the conductance values of the segments  of an annular l ayer  with t he rma l  con- 

duct ivi t ies  k ~ and k 2; 

d~zij 2~klzdz d~z,'] = 2 ~ d z  

Substituting d ~ z i j  and d~'azij f r o m  (8) into (7) and ca r ry ing  out the integrat ion,  we find the requi red  
conductance 

2 x v [ (  / 2 -v---:T ) I } I - -  y i -  l - - V "  I - -  yl  In - -  
] 

--(V I 2 | - y , _ , -  y :  ) �9 
J 

(9) 

t t  is  known that  t h e  conductance value Oazij de te rmined  f rom the express ion  (7) will be sys temat ica l ly  
= omin < fftr lower than its true value, Oazij z z" 
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The conductance in the y direct ion will be defined, for  the sake of simplicity,  as the conductance of a 
block completely filled with the void-fill ing component, i, e.,  

(i0) OayO 
In Yt 

Yi --1 

The conductance of the homogeneous blocks can be calculated by the well-kn0wn simple formulas  for a 
plane wall in the z direct ion and for a cyl indr ical  wall in the y direction. The scheme of interaction for  ca l -  
culating the t empera tu re  tij in a specific block ij is shown in Fig. 3. 

Knowing the conductance of the individual blocks ~ . / m a x ,  rain,  we can use a relaxation method for 
~ , .V  ,J 

calculating the values of the t empera tu re s  at the nodes as weighted average values of the t empera tu res  of the 
adjacent blocks: 

li+ 1 jOyli" ( i +  I) , /K'F l i _ l , jOyt ( t - - l , }  i, it 
t : l  : 

Ciyli i f+ l ) ,  ]l "~  Gy}(i--l) " I, ]l 

- -Jr- ti, j+lOZli, (1--~-1)- ]] ~- [i, j - lGZl i , ]  (1--1)1 

+ azIi, (/+1)- it -]- O'zli, i" (i--l)/ 

The e r r o r  in calculating the t empera tu re  field in a radial  element under considerat ion (Fig. la) can be 
es t imated by comparing the values of the heat flux qin at the inlet (the lower base of the radial  element) and 

qout at the outlet (the upper base). 

Using the values ~szij, O syij for  the two-component  blocks, we can obtain h igher - than- t rue  values for  

the fluxes max and qmax. 
q in out" 

�9 n__ ma~Lmin max,finn. 
qin = ~-](tin-- tij)2~sz~Jlf';=l " 

t=l (11) 
n 

qout -- 2 ( 

nmxs m~l 
t i , j . n m a x ,  min --/.out) 2 ~ j ] l ,  i=n  

i=1 

The effective conductivity s of the radial  element (and of the model  as a whole) in the z direction is 
calculated on the basis  of Four ie r '  s law, assuming that the ent ire  volume is filled with a substance having 

conductivity. ~: 

~ma~,min= qmax, min H 

t in--  tout S 
(12) 

where H and S are  the height and a rea  of the radial  element or  of the model as a whole. 

In Fig. 4b we have cons t ruc ted  the graph of the rat io of the effective thermal  conductivity to the thermal  
conductivity of the second component as a function of the number of blocks into which the composite body has 
been subdivided. The body was subdivided along the y axis into blocks with a uniform step, and the rat io of 
the rmal  conductivities of the component pa r t s  of the body was v = 0.01. F r o m  Fig. 4b it can be seen that the 

relat ive deviation 

A__q_q = _(qin - -  q~t )paax, min . 100% (13) 
q 0-5(qin +qout:)jmax, rain 

does not exceed 1% and that as the number  of blocks inc reases ,  the value of hmax  decreases ,  while hmin 
inc reases ;  consequently, the t rue value of the effective conductivity h will lie in the interval  between hmax  
and ;~min and will differ f rom the ar i thmetic  mean value ~= 0.5(X max + X rain) by no more  than the quantity 

0.5(xmax-xm%. 

R e s u l t s  o f  t h e  C a l c u l a t i o n s  a n d  E s t i m a t e  o f  t h e  E r r o r  

It can be seen f rom Fig. 4b that with a gr id  having a uniform step along the y axis, when we used 506 
blocks, the relat ive deviation/x j~/~ between the maximum and minimum values of the effective conductivity 
was about 10% for u = 0.01, and we do not expect the values of A max and k min to get substantially c l o s e r t o  
each other. The average amount of machine t ime used for  calculating one point on the Minsk-22 electronic 

computer  was 35 min. 

1 7 8  



For  a g r ea t e r  difference between the p roper t i es  of the components (for example, when par t ic les  with 
high the rmal  conductivity are  used in combination with air ,  we have 1" 102 < k l / k  2 < 1. 104), the difference 
Ak/k exceeded 100% and made it impossible to use the k as standard values for estimating the e r r o r s  of the 
approximate methods for calculating the effective thermal  conductivity. 

it became advisable to use a nonuniform subdivision along the y axis, Therefore ,  when k l / ~ .  2 ~ 1.103, 
with a step of 

(in Fig. 

r i /2y~ 
Y~ --  Yi _1 = I n  (14) 

4b this is indicated by a point), or even 

= V)  

In Fig. 4a we show the values of the effective thermal  conductivity which were calculated by the proposed 
method. As can be seen f rom the figure, the difference between the values of k max and k rain (curves 2 and 3) 
becomes considerably la rger  as the ratio k~/k  2 increases .  However,  even for A1/k 2 = 1. 10 4 the k max and 
k min values calculated by the proposed method differ by no more  than 30%, and their  ar i thmetic  mean value 
differs f rom the t rue value by less  than 15% and may be regarded  as a standard for estimating the e r r o r  of 
other approximate methods. 

Comparing the calculated functions for the effective thermal  conductivity which were obtained by Vakao 
and Vor tmeyer  [1] (curve 1 of Fig. 4a) and by us, we note that the Vakao- -Vor tmeyer  values are considerably 
lower (for k i / s  2 > 103 the difference amounts to 100~/c). The reason for this difference, in our opinion, is that 
the conductances of the boundary blocks were too crudely calculated and that the region was subdivided uni- 
formly.  

To obtain more  prec ise  "standard" values, we would have to make the gr id  denser  and increase  the 
computation time. 

By using this combination of the gr id  method and th8 Rayleigh method, we can eliminate the systematic  
e r r o r s  due to the fact that the model r ep resen t s  the component interface in two-component  blocks; it gives us 
very  useful resul ts  in the case when the p roper t i es  of the components differ great ly ,  s  2 > 1. 10 2, reducing 
the machine computation t ime to a f ract ion of its value, with a corresponding reduction of the accumulated 
computational e r ro r .  

The amount of machine t ime required inc reases  with the rat io k l / k  2. Th3 method considered here was 
compared  with the methods of  finite differences [3, 4, 5] and finite elements [6, 7]. The compar ison showed 
that in order  to obtain a specified accuracy,  the present  method requires  a smal le r  number of nodes and less 
machine time. 

N O T A T I O N  

k 1, t he rma l  conductivity of hemisphere;  ~ 2, the rmal  conductivity of substance filling the gap between 
the hemispheres ;  y, z, coordinate axes; ij, subscr ipts  for  coordinates of gr id  lines; Uszij and Rszij , thermal  
conductance and thermal  res is tance ,  respect ively,  of two-component block ij in the direction of the z axis for 
i so thermal  subdivision; v, ratio of thermal  conductivities of components; O syij , thermal  conductance of homo- 
geneous block in the direction of the y axis of the component with thermal  conductivity ;~ 1; ~ thermal  
conductance of two-component  block ij in the direction of the z axis for adiabatic subdivision; aayij , thermal  
conductance of homogeneous block in the direction of the y axis of the component with thermal  conductivity ~ 2; 
tij , t empera tu re  at the center  of block ij; qin, heat flux at inlet of model; qout, heat flux at outlet; h,  effective 
conductivity of the model; H, height; S, a rea  of base of model;  k,  ari thmetic mean value of the effective 
thermal  conductivity. 

1. 
2. 
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S P E C I F I C  H E A T  O F  R H E N I U M  A T  H I G H  T E M P E R A T U R E S  

L .  P .  F i l i p p o v  a n d  F .  G.  I ~ l ' d a r o v  UDC 536.212 

The r e su l t s  of m e a s u r e m e n t s  of the specif ic  heat  of a wire  sample  of rhenium in the t e m p e r a t u r e  
in te rva l  1600-2400~ and a lso  data on the e l ec t r i c a l  r e s i s t i v i t y  and the in tegra ted  degree  of 
b lackness  a r e  repor ted .  

To date, insufficient  attention has  been given to the specif ic  heat  of rhenium at high t empe ra tu r e s .  

Tay lo r  and Finch [1] ci ted data on the specif ic  heat  up to 3100~ although in fact  the exper imenta l  m a -  
t e r i a l  is obtained up to 2000~ since the e l ec t r i ca l  r e s i s t i v i t y  r equ i red  for  the t r e a t m e n t  of the corresponding 
data is m e a s u r e d  only up to this  t e m p e r a t u r e  and then extrapolated.  The r e su l t s  of this extrapolat ion cannot 
be r ega rded  as pa r t i cu l a r ly  re l iab le ,  s ince it involves the continuation of a curve  whose slope is  s t rongly 
dependent on t e m p e r a t u r e  (it would be m o r e  logical  to ex t rapola te  the specif ic  heat  i tself  --  a weaker  function 
of t empera tu re ) .  The a c c u r a c y  of the data in Tay lo r  and Finch '  s pape r  could a lso  do with being improved  
upon. In o rde r  to find the specif ic  heat  in the pulse method of m e a s u r e m e n t  used by these  authors ,  it is  
n e c e s s a r y  to de te rmine  the t ime  der iva t ive  of a cu rve  produced on the s c r een  of an osci l loscope,  a p rocedure  
that is  a ssoc ia ted  with a la rge  e r r o r .  

The m e a s u r e m e n t s  r epo r t ed  in [2] a r e  coarse .  The data a r e  obtained by photographing the var ia t ion  in 
t ime  of the read ings  of a photoe lec t r ic  p y r o m e t e r  on the s c r een  of an osc i l loscope;  the specif ic  heat  i s  obtained 
via  m e a s u r e m e n t s  of the in tegra ted  degree  of b lackness ,  and the r e su l t s  a re  p resen ted  in the fo rm of a l a rg e -  

sca le  graph.  

The specif ic  heat  m e a s u r e m e n t s  of rhenium repor t ed  in [3] r e l a t e  to a single c r y s t a l  sample .  They 
span the t e m p e r a t u r e  in te rva l  up to 2500~ but, as  noted p rev ious ly  [3, 4], a re  of a tentat ive c h a r a c t e r ,  since 

they were  obtained ignoring anisot ropy of the single c rys ta l .  

In the work r epo r t ed  he re  the specif ic  heat  of wire  samples  of rhenium was m e a s u r e d  using the method 
prev ious ly  developed in the Depar tmen t  of Molecular  Phys i c s  and Mechanics of the Phys ic s  Facul ty  of Moscow 
State Univers i ty  [5]. This  method cons i s t s ,  essent ia l ly ,  in heating the inves t igated sample  by the sum of dc 
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Fig. 1. Measured  specif ic  hea t  of rhenium. The 
dashed curve  was ca lcula ted  f r o m  (5). Cp i s  in c a l / g -  
atom �9 ~ t e m p e r a t u r e  T is  in ~ 
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