heat fluxes; s, area of contact; T, temperature; u, uy, filtration speed and fluidization onset speed; x;, stress
axes; o, proportion of conducting particles in binary mixture; 8(y), ratio of effective conductivity of medium
containing noncontacting particles to the effective conductivity of the continuous phase for A; > Ag; v, particle
density minus specific buoyancy; 6, compression length; £, coordination number; 8, ¢, angular coordinates

of contact relative to mean flow direction; », exponent in (13) and (14); A4, eigenvalues of conductivity tensor
A3 Ay Ay, conductivities of continuous and dispersed phases; v, fraction of surface area represented by a
single contact; s, volume content of dispersed phase; o, compressive stress; T, mean temperature; ®, dis-
tribution function; ¢ (u), hydraulic force per unit particle volume; *, values referred to one particle; { ),
averages.

LITERATURE CITED

1. A. F. Chudnovskii, Thermophysical Characteristics of Dispersed Materials [in Russian], Fizmatgiz,
Moscow (1962).

2. (} N. Dul'nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composites [in Russian},

Energiya, Leningrad (1974).

Yu. A. Buevich and Yu. A. Korneev, Inzh. -Fiz, Zh., 31, No. 4 (1976).

D. L. Swift, Intern. J. Heat Mass Transf., 9, 1061 (1966).

V. A. Borodulya, High-Temperature Processes in an Electrothermal Fluidized Bed [in Russian], Nauka

i Tekhnika, Minsk (1973).

R. G. Deissler and J. S. Boegli, Trans. ASME, 80, 1417 (1958).

N. Wakao and D. Vortmeyer, Chem. Eng. Sci., 26, 1753 (1971).

L. D. Landau and E. M. Lifskits, Theory of Elasticity, 2nd ed., Addison-Wesley (1971).

M. £. Azrov and O. M. Todes, The Hydraulic and Thermal Principles of Equipments with Stationary

Fluidized Beds [in Russian], Khimiya, Leningrad (1968).

10.  A. K. Reed and W, M. Goldberger, Chem, Eng. Progr. Symp., Ser. 62, No. 7 (1966).

11, 8. Kirkpatrick, Rev. Mod. Phys, 45, 574 (1973).

12, B. L Shklovskii and A. L. Efros, Usp. Fiz. Nauk, 117, 401 (1975).

w
.

D

X ae

A COMBINED NUMERICAL METHOD FOR DETERMINING
THE CONDUCTANCE GF COMPOSITE BODIES

G. N, Dul'nev, M. A. Eremeev, UDC 536.242: 518.61
Yu. P. Zarichnyak, and E. N. Koltunova

We propose a new numerical method (a combination of the method of grids with Rayleigh's
method) which is very promising for the caiculation of potential fields, fluxes, and conductance
of composite bodies, especially in the case of components with sharply differing properties.

We consider a two-component region in the form of a cylinder made up of two hemispheres which are in
contact at the point A (Fig. 1). As an example, we consider the problem of determining the effective con-
ductance, say the effective thermal conductivity, of the composite region, We denote the thermal conductivity
of the material of the hemispheres by A; and that of the material filling the gap between them by A,, where
Ay and A, may be substantially different. Suppose (for the sake of definiteness) that the bases of the cylinder
are isopotential (isothermal) planes and that the lateral surface is impenetrable to the streamlines (an
adiabatic surface). Such a composite system is often used for constructing a model of the structure of granular
materials when we calculate their effective coefficients of generalized conductance (thermal conductivity,
electrical conductivity, dielectric permittivity, magnetic permeability, etc.).
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Fig. 1. Model of structural granular materials: a) axono-
metric representation of model; by distribution of streamlines
in model and subdivision into blocks by a grid.

Since we have no exact solution of the problem for the conductance of the model for an arbitrary relation-
ship between the properties of the components A and A,, it becomes necessary to use various approximate
methods for the analytical determination of the conductance, The error in the approximate methods can be
estimated and the boundaries of their applicability can be determined by comparing the result of an approxi-
mate calculation with an analogous quantity obtained by a numerical method which, for sufficiently small
error, can be taken as the standard.

In order to carry out the numerical calculation, we subdivide the composite region into small segments
(blocks). If the properties of the components differ greatly (for example, A,<< A;), the concentration of
streamlines (the streamline density) (Fig. 1b) in the region near the point of contact is much greater than
at the periphery, so that we must use a grid with a nonuniform step which decreases as we approach the point
of contact. We therefore subdivide the region in such a way that the dimensions of the grid step along the z
axis will be determined by the intersection of the grid along the y axis with the sphere—gap component inter-
face. We assign the subscripts i and j to the coordinates of the grid lines (Fig. 1b).

As a result, the composite region is subdivided into biocks most of which are filled with homogeneous
components (with thermal conductivity A, or A;), while a smaller number of them (the blocks intersected by
the component interface) are filled with components of different kinds.

The proposed method of subdividing along the z axis considerably simplifies our further description,
since it enables us to have only one type of two-component blocks with a spherical interface passing between
diagonally opposite vertices (Fig. 2) instead of the five types of two-component blocks obtained in the investiga-
tion of a uniform subdivision along the y and z axes in [1]. The bases of a two-component block will also be
regarded as plane isotherms, while the lateral surface parallel to the z axis will again be taken to be adiabatic,

Conductance of the Blocks

The determination of the conductance of a small two-component block is an independent problem, which
we shall solve by Rayleigh's method [2].

First we divide a two-component block by means of isothermal planes parallel to the bases into in-
finitesimally thin flat layers of thickness dz (Fig. 2a). The thermal conductance of such a flat two-component
layer in the z direction will be denoted by dug, (where s is the subscript for the isothermal subdivision) and

calculated as the conductance of two flat walls of thickness dz with thermal conductivities A, and A, which are
positioned perpendicular to the heat flux.

z 2y
% A a | ; i b/
z : <
7 e |
Y 7Y 9 4

Fig, 2. Example of the separation of a two-component block
by isothermal (a) and adiabatic (b) surfaces,
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! ‘| Tiiet : : Fig. 3. Scheme of interaction of blocks in the

1 ! JI] : l calculation of the temperature tjj in an individual
e P — ] block ij: 1) ouf(j_1)oi. il =Y [o=.  +ot 1.
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The thermal conductance 0gzij of a two-component block in the z direction can be obtained by summing
(integrating) the thermal resistances of the system of successively positioned layers of thickness dz, i. e.,

1 1
Oszij = Re.., = z; ‘ (1)
S
: 251
Each elementary resistance dRszij is formed by the paralle] combination of the resistance dR'szij and
d.R"Szij (Fig. 2a) of a particle and the void-filling component; therefore,
ARy iy = (RS y) ™ + (R, 7Y, @
where

dz dz
Ty (2 —yia) | kg (97 — 4*)

At the component interface the grid coordinates (for i = j) y; and z, are related by the equation y-2 = 1—(1—z,)%
Therefore, ' ) ' !

dRsuj = dRsz; =

. dz
dR 2] = o ?
T i (1 — 25_)P —(1—2)7] 3)
v dz
dRszij = -
T (1 — 2P — (1—2)7
From the expressions (2) and (3)
dz A

dRs:ii =

: L v=2t2 (4)
ah (1 —z;_ > — (1 —z;)* — (1 — v)(1—2)} Ay

Substituting (4) into (1) and carrying out the integration, we obtain an expression for calculating the
conductance of block ij in the z direction:

2V TV (1= =gy —00)
Va—vwil—gl) V(1 —v——v)
V (=1 —e)+V (1 —v)— @i — i)

(9

Os2ij =

In

It is known that the conductance value calculated from expression (1) will be systematically higher than

its true value otzr’ i e., 05445 = gpax > ogr. In the y direction the conductance ogyjj can be calculated in an

analogous manner, but unfortunately the integration for obtaining the calculated expression can be carried
out only by numerical methods.

We therefore simplify the problem and define ugyij as the conductance of a block completely filled with
the material of a particle:

VI —y, —V1—y?
Gogy = 20, L LY =4 (6)
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Fig. 4. Comparison of the results of cal-
culating the effective thermal conductivity of
the model as a function: a) of the ratio of ther-
mal conductivities of the components [1) Vakao
and Vortmeyer [1]; 2, 3) AImax/,, and Aminy/
A, — the method proposed here]; b} of the num-
ber of blocks N in the grid, v = 0.01 [T) ?\I(?&X /
Mg I) AIRAX /2 o5 TII) AiD/ o, IV) AR/ X o
the marked point is for Amax, ) 1,

Obviously, the value calculated by (6)'for the conductance Ugyij will be too high, and therefore we can
use it for calculating \IMax

Now we shall subdivide the blocks into infinitesimally thin layers of width dy by using a system of
adiabatic surfaces perpendicular to the isothermal bases of the two-component block (Fig. 2b). The thermal
resistance of each thin layer dRay can be represented as the sum of the thermal resistances of two flat walls
of width dy filled with components having thermal conductivities A,-and A ,.

The thermal conductance of the block in the direction of the z axis calculated by this method will be
denoted by Oagijs We can obtain it from the expression

g .o .y
Cagij .—_—S doaziiv daazii = {(do'azii) ! T (dO’azi,‘) 1} l' (7)
Yia
where do‘atzij and dU"azij are the conductance values of the segments of an annular layer with thermal con-
ductivities A; and Ay
, 20 2dz - 2nh,zdz
Ao, =~ X , 0z = . 8)
= Vi "‘!/2"']/1——_1/;2 - Vl-—-yiz—l"‘/l -y

Substituting dU'azij and dg"azij from (8) into (7) and carrying out the integration, we find the required
conductance

2nv [( - VIi—ygi —V 11—y
1—v 1 —w

)ln% =W 1—ygl =V 1i—gf )]- (9

Cazij =

It is known that the conductance value 0Oazjj determined from the expression (7) will be systematically
lower than its true value, ¢
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The conductance in the y direction will be defined, for the sake of simplicity, as the conductance of a
block completely filled with the void-filling component, i.e.,

Vicy—Vi—#

Yy ’
Yia
The conductance of the homogeneous blocks can be calculated by the well-known simple formulas for a

plane wall in the z direction and for a cylindrical wall in the y direction. The scheme of interaction for cal-
culating the temperature tjj in a specific block ij is shown in Fig, 3.

Oagrs = 27hy (10)

In

Knowing the conductance of the individual blocks o, o/ max, min  ye can use a relaxation method for
calculating the values of the temperatures at the nodes as weighted average values of the temperatures of the
adjacent blocks:

g Oyt G+ 00T Loy, O i il
Oy (41,3 T Ouii=h) B

L=

+ &, 5010z, g1y i1 by 1020 G-
+ Oz, i1y 1) G, i =Y

The error in calculating the temperature field in a radial element under consideration (Fig. la) can be
estimated by comparing the values of the heat flux q;,, at the inlet (the lower base of the radial element) and
dout at the outlet (the upper base).

Using the values vggzij, Usyij for the two-component blocks, we can obtain higher-than-true values for

the fluxes qnilnax and qngx;

n ) :.
,min. max, min
Q?nax M z(tin_ 13) 20345l =1 *
i=l max mi (11)
, min

n
max, min
Tt & 2 (4, — tout) 20,151, j=n
=1

The effective conductivity A of the radial element (and of the model as a whole) in the z direction is
calculated on the basis of Fourier's law, assuming that the entire volume is filled with a substance having
conductivity-A:

\max,min_ qmax,min ) i (12)

’

tin — fout S
where H and S are the height and area of the radial element or of the model as a whole.

In Fig. 4b we have constructed the graph of the ratio of the effective thermal conductivity to the thermal
conductivity of the second component as a function of the number of blocks into which the composite body has
been subdivided. The body was subdivided along the y axis into blocks with a uniform step, and the ratio of
thermal conductivities of the component pérts of the body was v = 0.01. From Fig. 4b it can be seen that the
relative deviation

L ax, min

A7 _ @ —tou) "™ 004 (13)
g 0.5(gin +qout )max,min :

does not exceed 1Y% and that as the number of blocks increases, the value of Amax decreases, while Amin

increases; consequently, the true value of the effective conductivity A will lie in the interval between Amax

and AN 404 will differ from the arithmetic mean value A= 0.5(AT08X + A1y by no more than the quantity
AN= 0.5(NmaX_miny

Results of the Calculations and Estimate of the Error

It can be seen from Fig. 4b that with a grid having a uniform step along the y axis, when we used 506
pblocks, the relative deviation & /\/7\ between the maximum and minimum values of the effective conductivity
was about 10% for v = 0.01, and we do not expect the values of AT2X and AN to get substantially closerto
gach other. The average amount of machine time used for calculating one point on the Minsk-22 electronic
computer was 35 min,
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For a greater difference between the properties of the components (for example, when particles with
high thermal conductivity are used in combination with air, we have 1- 102 < A /Ay < 1- 104), the difference
AM M exceeded 100% and made it impossible to use the A as standard values for estimating the errors of the
approximate methods for calculating the effective thermal conductivity.

Therefore, when A /A, = 1. 10%, it became advisable to use a nonuniform subdivision along the y axis,
with a step of

Yo Yi = (—l )'yn (14)

"(in Fig. 4b this is indicated by a point}, or even

o PN3
Yi—Yi1= (\;} Yp-

In Fig. 4a we show the values of the effective thermal conductivity which were calculated by the proposed
method. As can be seen from the figure, the difference between the values of AT8X and AR (curves 2 and 3)
becomes considerably larger as the ratio A,/\, increases. However, even for A;/A, = 1-10% the A Max and
AN valyes calculated by the proposed method differ by no more than 30%, and their arithmetic mean value
differs from the true value by less than 15% and may be regarded as a standard for estimating the error of
other approximate methods.

Comparing the calculated functions for the effective thermal conductivity which were obtained by Vakao
and Vortmeyer {1} (curve 1 of Fig. 4a) and by us, we note that the Vakao—Vortmeyer values are considerably
lower (for Aq/A,> 10° the difference amounts to 100%). The reason for this difference, in our opinion, is that
the conductances of the boundary blocks were too crudely calculated and that the region was subdivided uni-
formly.

To obtain more precise "standard" values, we would have to make the grid denser and increase the
computation time,

By using this combination of the grid method and the Rayleigh method, we can eliminate the systematic
errors due to the fact that the model represents the component interface in two-component blocks; it gives us
very useful results in the case when the properties of the components differ greatly, A,/ A,> 1-10% reducing
the machine computation time to a fraction of its value, with a corresponding reduction of the accumulated
computational error.

The amount of machine time required increases with the ratio A,/A, The method considered here was
compared with the methods of finite differences [3, 4, 5] and finite elements {6, 7). The comparison showed
that in order to obtain a specified accuracy, the present method requires a smaller number of nodes and less
machine time.

NOTATION

Ay, thermal conductivity of hemisphere; A, thermal conductivity of substance filling the gap between
the hemispheres; y, z, coordinate axes; ij, subscripts for coordinates of grid lines; Uszij and Rgzij, thermal
conductance and thermal resistance, respectively, of two-component block ij in the direction of the z axis for
isothermal subdivision; v, ratio of thermal conductivities of components; Ugyijs thermal conductance of homo-
geneous block in the direction of the y axis of the component with thermal conductivity A ; Oazijs thermal
conductance of two-component block ij in the direction of the z axis for adiabatic subdivision; Oayij» thermal
conductance of homogeneous block in the direction of the y axis of the component with thermal conductivity A 25
tjj» temperature at the center of block ij; qin, heat flux at inlet of model; goyut, heat flux at outlet; A, effective
conductivity of the model; H, height; S, area of base of model; A, arithmetic mean value of the effective
thermal conductivity.
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SPECIFIC HEAT OF RHENIUM AT HIGH TEMPERATURES

L. P. Filippov and F. G. El'darov UDC 536.212

The results of measurements of the specific heat of a wire sample of rhenium in the temperature
interval 1600-2400°K and also data on the electrical resistivity and the integrated degree of
blackness are reported.

To date, insufficient attention has been given to the specific heat of rhenium at high temperatures.

Taylor and Finch [1] cited data on the specific heat up to 3100°K, although in fact the experimental ma-
terial is obtained up to 2000°K, since the electrical resistivity required for the treatment of the corresponding
data is measured only up to this temperature and then extrapolated. The results of this extrapolation cannot
be regarded as particularly reliable, since it involves the continuation of a curve whose slope is strongly
dependent on temperature (it would be more logical to extrapolate the specific heat itself — a weaker function
of temperature). The accuracy of the data in Taylor and Finch's paper could also do with being improved
upon. In order to find the specific heat in the pulse method of measurement used by these authors, it is
necessary to determine the time derivative of a curve produced on the screen of an oscilloscope, a procedure
that is associated with a large error.

The measurements reported in [2] are coarse. The data are obtained by photographing the variation in
time of the readings of a photoelectric pyrometer on the screen of an oscilloscope; the specific heat is obtained
via measurements of the integrated degree of blackness, and the results are presented in the form of a large-
scale graph.

The specific heat measurements of rhenium reported in [3] relate to a single crystal sample. They
span the temperature interval up to 2500°K, but, as noted previously [3, 4], are of a tentative character, since
they were obtained ignoring anisotropy of the single crystal.

In the work reported here the specific heat of wire samples of rhenium was measured using the method
previously developed in the Department of Molecular Physics and Mechanics of the Physics Faculty of Moscow
State University [5]. This method consists, essentially, in heating the investigated sample by the sum of dc

T -
T

/5:70 1800 2000 2200 2400 T

Fig. 1. Measured specific _ﬁéat of rhenium. The
dashed curve was calculated from (5). Cpisin cal/g-
atom - °K; temperature T is in °K.
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